A 5-Wave Relaxation Solver for the Shallow Water MHD System

نویسندگان

  • François Bouchut
  • Xavier Lhébrard
چکیده

The shallow water magnetohydrodynamic system describes the thin layer evolution of the solar tachocline. It is obtained from the three dimensional incompressible magnetohydrodynamic system similarly as the classical shallow water system is obtained from the incompressible NavierStokes equations. The system is hyperbolic and has two additional waves with respect to the shallow water system, the Alfven waves. These are linearly degenerate, and thus do not generate dissipation. In the present work we introduce a 5-wave approximate Riemann solver for the shallow water magnetohydrodynamic system, that has the property to be non dissipative on Alfven waves. It is obtained by solving a relaxation system of Suliciu type, and is similar to HLLC type solvers. The solver is positive and entropy satisfying, ensuring its robustness. It has sharp wave speeds, and does not involve any iterative procedure.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A multiwave approximate Riemann solver for ideal MHD based on relaxation II: numerical implementation with 3 and 5 waves

In the first part of this work ([5]), we introduced an approximate Riemann solver for one-dimensional ideal MHD derived from a relaxation system. We gave sufficient conditions for the solver to satisfy discrete entropy inequalities, and to preserve positivity of density and internal energy. In this paper we consider the practical implementation, and derive explicit wave speed estimates satisfyi...

متن کامل

A multiwave approximate Riemann solver for ideal MHD based on relaxation. I: theoretical framework

We present a relaxation system for ideal MHD that is an extension of the Suliciu relaxation system for the Euler equations of gas dynamics. From it one can derive approximate Riemann solvers with three or seven waves, that generalize the HLLC solver for gas dynamics. Under some subcharacteristic conditions, the solvers satisfy discrete entropy inequalities, and preserve positivity of density an...

متن کامل

A Riemann solver for single-phase and two-phase shallow flow models based on relaxation. Relations with Roe and VFRoe solvers

We present a Riemann solver derived by a relaxation technique for classical single-phase shallow flow equations and for a two-phase shallow flow model describing a mixture of solid granular material and fluid. Our primary interest is the numerical approximation of this two-phase solid/fluid model, whose complexity poses numerical difficulties that cannot be efficiently addressed by existing sol...

متن کامل

Augmented Riemann solvers for the shallow water equations over variable topography with steady states and inundation

We present a class of augmented approximate Riemann solvers for the shallow water equations in the presence of a variable bottom surface. These belong to the class of simple approximate solvers that use a set of propagating jump discontinuities, or waves, to approximate the true Riemann solution. Typically, a simple solver for a system of m conservation laws uses m such discontinuities. We pres...

متن کامل

Hull Performance Assessment and Comparison of Ship-Shaped and Cylindrical FPSOs With Regards To: Stability, Sea-Keeping, Mooring and Riser Loads In Shallow Water

Floating, Production, Storage and Offloading “FPSO” have become a popular choice since 1980s for marginal and fast-track developments where subsea pipeline is not an economic or feasible solution for export. Field development usually starts with a concept selection procedure which is constituted from a sequence of multi-disciplinary decision making tasks. As limited data is availabl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Sci. Comput.

دوره 68  شماره 

صفحات  -

تاریخ انتشار 2016